Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(3): e2302128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922434

RESUMO

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.


Assuntos
Células-Tronco Mesenquimais , Tecido Nervoso , Traumatismos dos Nervos Periféricos , Humanos , Nervo Isquiático , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia , Matriz Extracelular , Regeneração Nervosa/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37723386

RESUMO

In the context of global climate change and the influence of human activities, the concept of "sponge city" is put forward to realize the purification, collection, and reuse of rainwater. The effective evaluation of LID facilities in sponge cities is of great guiding significance for the promotion and construction of sponge cities. IFMS (Integrated Flood Modeling System) Urban was selected to construct the rainstorm simulation. LID parameters were added to simulate the improvement of urban waterlogging after the construction of sponge city. A reasonable disaster loss assessment method was used to calculate the disaster mitigation benefit brought by the construction of sponge city. Through the comparison of the inundation situation before and after LID facilities' construction, it can be concluded that the mitigation effect of LID facilities on the overall inundation area of the city decreases with the increase of rainfall recurrence period, with the maximum reduction rate reaching 13.63% in the 5-year recurrence period and the minimum reduction rate of 11.06% in the 50-year recurrence period. LID facilities have a better disaster reduction effect for rainfall events with a small recurrence period than for rainfall events with a large recurrence period.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37610911

RESUMO

Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion plannings and relative distances to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.

4.
Hortic Res ; 10(7): uhad105, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577401

RESUMO

Cytoplasmic male sterility (CMS) has long been used to produce seedless fruits in perennial woody crops like citrus. A male-sterile somatic cybrid citrus (G1 + HBP) was generated by protoplast fusion between a CMS callus parent 'Guoqing No. 1' Satsuma mandarin (Citrus unshiu, G1) and a fertile mesophyll parent Hirado Buntan pummelo (Citrus grandis, HBP). To uncover the male-sterile mechanism of G1 + HBP, we compared the transcriptome profiles of stamen organ and cell types at five stages between G1 + HBP and HBP, including the initial stamen primordia, enlarged stamen primordia, pollen mother cells, tetrads, and microspores captured by laser microdissection. The stamen organ and cell types showed distinct gene expression profiles. A majority of genes involved in stamen development were differentially expressed, especially CgAP3.2, which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1 + HBP compared with HBP. Jasmonic acid- and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia, and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1 + HBP. In contrast, the content of auxin biosynthesis metabolites was lower in G1 + HBP. The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia, meiocytes, and microspores, indicating the dysfunction of mitochondria in stamen organ and cell types of G1 + HBP. Taken together, the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development, and thus lead to male sterility in the citrus cybrid.

5.
Neuroscience ; 524: 149-157, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286159

RESUMO

Deferoxamine (DFO) is a potent iron chelator for clinical treatment of various diseases. Recent studies have also shown its potential to promote vascular regeneration during peripheral nerve regeneration. However, the effect of DFO on the Schwann cell function and axon regeneration remains unclear. In this study, we investigated the effects of different concentrations of DFO on Schwann cell viability, proliferation, migration, expression of key functional genes, and axon regeneration of dorsal root ganglia (DRG) through a series of in vitro experiments. We found that DFO improves Schwann cell viability, proliferation, and migration in the early stages, with an optimal concentration of 25 µM. DFO also upregulates the expression of myelin-related genes and nerve growth-promoting factors in Schwann cells, while inhibiting the expression of Schwann cell dedifferentiation genes. Moreover, the appropriate concentration of DFO promotes axon regeneration in DRG. Our findings demonstrate that DFO, with suitable concentration and duration of action, can positively affect multiple stages of peripheral nerve regeneration, thereby improving the effectiveness of nerve injury repair. This study also enriches the theory of DFO promoting peripheral nerve regeneration and provides a basis for the design of sustained-release DFO nerve grafts.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Nervosa/fisiologia , Gânglios Espinais , Axônios , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Células Cultivadas , Células de Schwann/metabolismo , Fatores de Crescimento Neural/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo
6.
Bioact Mater ; 26: 370-386, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36942011

RESUMO

Autologous nerve grafting serves is considered the gold standard treatment for peripheral nerve defects; however, limited availability and donor area destruction restrict its widespread clinical application. Although the performance of allogeneic decellularized nerve implants has been explored, challenges such as insufficient human donors have been a major drawback to its clinical use. Tissue-engineered neural regeneration materials have been developed over the years, and researchers have explored strategies to mimic the peripheral neural microenvironment during the design of nerve catheter grafts, namely the extracellular matrix (ECM), which includes mechanical, physical, and biochemical signals that support nerve regeneration. In this study, polycaprolactone/silk fibroin (PCL/SF)-aligned electrospun material was modified with ECM derived from human umbilical cord mesenchymal stem cells (hUMSCs), and a dual-bionic nerve regeneration material was successfully fabricated. The results indicated that the developed biomimetic material had excellent biological properties, providing sufficient anchorage for Schwann cells and subsequent axon regeneration and angiogenesis processes. Moreover, the dual-bionic material exerted a similar effect to that of autologous nerve transplantation in bridging peripheral nerve defects in rats. In conclusion, this study provides a new concept for designing neural regeneration materials, and the prepared dual-bionic repair materials have excellent auxiliary regenerative ability and further preclinical testing is warranted to evaluate its clinical application potential.

7.
Glia ; 71(3): 758-774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484493

RESUMO

Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Degeneração Walleriana/terapia , Degeneração Walleriana/patologia , Neuropatia Ciática/patologia , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Estimulação Elétrica
8.
Proc Natl Acad Sci U S A ; 119(43): e2206076119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36260744

RESUMO

Although interactions between the cytoplasmic and nuclear genomes occurred during diversification of many plants, the evolutionary conflicts due to cytonuclear interactions are poorly understood in crop breeding. Here, we constructed a pan-mitogenome and identified chimeric open reading frames (ORFs) generated by extensive structural variations (SVs). Meanwhile, short reads from 184 accessions of citrus species were combined to construct three variation maps for the nuclear, mitochondrial, and chloroplast genomes. The population genomic data showed discordant topologies between the cytoplasmic and nuclear genomes because of differences in mutation rates and levels of heteroplasmy from paternal leakage. An analysis of species-specific SVs indicated that mitochondrial heteroplasmy was common and that chloroplast heteroplasmy was undetectable. Interestingly, we found a prominent divergence in the mitogenomes and the highest genetic load in the, which may provide the basis for cytoplasmic male sterility (CMS) and thus influence the reshuffling of the cytoplasmic and nuclear genomes during hybridization. Using cytoplasmic replacement experiments, we identified a type of species-specific CMS in mandarin related to two chimeric mitochondrial genes. Our analyses indicate that cytoplasmic genomes from mandarin have rarely been maintained in hybrids and that paternal leakage produced very low levels of mitochondrial heteroplasmy in mandarin. A genome-wide association study (GWAS) provided evidence for three nuclear genes that encode pentatricopeptide repeat (PPR) proteins contributing to the cytonuclear interactions in the Citrus genus. Our study demonstrates the occurrence of evolutionary conflicts between cytoplasmic and nuclear genomes in citrus and has important implications for genetics and breeding.


Assuntos
Citrus , Genoma de Cloroplastos , Domesticação , Citrus/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genoma de Cloroplastos/genética
9.
Stem Cell Res Ther ; 13(1): 3, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012663

RESUMO

BACKGROUND: Peripheral nerve injury (PNI) is one of the essential causes of physical disability with a high incidence rate. The traditional tissue engineering strategy, Top-Down strategy, has some limitations. A new tissue-engineered strategy, Bottom-Up strategy (tissue-engineered microtissue strategy), has emerged and made significant research progress in recent years. However, to the best of our knowledge, microtissues are rarely used in neural tissue engineering; thus, we intended to use microtissues to repair PNI. METHODS: We used a low-adhesion cell culture plate to construct adipose-derived mesenchymal stem cells (ASCs) into microtissues in vitro, explored the physicochemical properties and microtissues components, compared the expression of cytokines related to nerve regeneration between microtissues and the same amount of two-dimension (2D)-cultured cells, co-cultured directly microtissues with dorsal root ganglion (DRG) or Schwann cells (SCs) to observe the interaction between them using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA). We used grafts constructed by microtissues and polycaprolactone (PCL) nerve conduit to repair sciatic nerve defects in rats. RESULTS: The present study results indicated that compared with the same number of 2D-cultured cells, microtissue could secrete more nerve regeneration related cytokines to promote SCs proliferation and axons growth. Moreover, in the direct co-culture system of microtissue and DRG or SCs, axons of DRG grown in the direction of microtissue, and there seems to be a cytoplasmic exchange between SCs and ASCs around microtissue. Furthermore, microtissues could repair sciatic nerve defects in rat models more effectively than traditional 2D-cultured ASCs. CONCLUSION: Tissue-engineered microtissue is an effective strategy for stem cell culture and therapy in nerve tissue engineering.


Assuntos
Regeneração Nervosa , Engenharia Tecidual , Animais , Células Cultivadas , Regeneração Nervosa/fisiologia , Ratos , Células de Schwann , Nervo Isquiático , Células-Tronco , Engenharia Tecidual/métodos
10.
Stem Cell Res Ther ; 13(1): 18, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033187

RESUMO

Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Citocinas , Humanos , Imunomodulação , Traumatismos dos Nervos Periféricos/terapia
11.
Front Plant Sci ; 13: 1065218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36874917

RESUMO

The genus Fragaria consists of a rich diversity of ploidy levels with diploid (2x), tetraploid (4x), pentaploid (5x), hexaploidy (6x), octoploid (8x) and decaploid (10x) species. Only a few studies have explored the origin of diploid and octoploid strawberry, and little is known about the roles of tetraploidy and hexaploidy during the evolution of octoploid strawberry. The chloroplast genome is usually a stable circular genome and is widely used in investigating the evolution and matrilineal identification. Here, we assembled the chloroplast genomes of F. x ananassa cv. 'Benihoppe' (8x) using Illumina and HiFi data seperately. The genome alignment results showed that more InDels were located in the chloroplast genomes based on the PacBio HiFi data than Illumina data. We obtain highly accurate chloroplast genomes assembled through GetOrganelle using Illumina reads. We assembled 200 chloroplast genomes including 198 Fragaria (21 species) and 2 Potentilla samples. Analyses of sequence variation, phylogenetic and PCA analyses showed that Fragaria was divided into five groups. F. iinumae, F. nilgerrensis and all octoploid accessions formed Group A, C and E separately. Species native to western China were clustered into Group B. Group D consisted of F. virdis, F. orientalis, F. moschata, and F. vesca. STRUCTURE and haplotype network confirmed that the diploid F. vesca subsp. bracteata was the last maternal donator of octoploid strawberry. The dN/dS ratio estimated for the protein-coding genes revealed that genes involved in ATP synthase and photosystem function were under positive selection. These findings demonstrate the phylogeny of totally 21 Fragaria species and the origin of octoploid species. F. vesca was the last female donator of octoploid, which confirms the hypothesis that the hexaploid species F. moschata may be an evolutionary intermediate between the diploids and wild octoploid species.

12.
Tissue Eng Part B Rev ; 28(5): 1007-1021, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34641714

RESUMO

The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM as a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development. Impact statement Cell-derived extracellular matrix (CDM) has received continued attention on the field of tissue engineering because of its promising biological characteristics. CDM deposited in vitro is rich in protein fractions and contains a wealth of biological information that provides a suitable niche for the survival and activity of isolated cells. More importantly, the free-assembling feature of CDM allows it to participate in the assembly of tissue-engineered scaffolds, imparting bionic properties to regenerative scaffolds, and thus CDM-modified scaffolds are widely used in the reconstruction of bone and cartilage tissue, peripheral nerves, skin, and blood vessels. This article is dedicated to summarizing the important results achieved by CDM-modified tissue engineering scaffolds in tissue organ reconstruction, helping readers to understand the developments in this field in recent years.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Tecidos Suporte/química , Cartilagem , Materiais Biocompatíveis
13.
Tissue Eng Part B Rev ; 28(2): 393-404, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33719547

RESUMO

Until now, there is no clear definition of microtissue; it usually refers to the microtissue formed by the aggregation of seed cells under the action of cell-cell or cell-extracellular matrix (ECM). Compared with traditional cell monolayer culture, cells are cultivated into a three-dimensional microstructure in a specific way. The microstructure characteristics of microtissue are similar to natural tissues and can promote cell proliferation and differentiation. Therefore, it has a broader range of biomedical applications in tissue engineering. The traditional tissue engineering strategy is to add high-density seed cells and biomolecules on a preformed scaffold to construct a tissue engineering graft. However, due to the destruction of the ECM of the cells cultured in a monolayer during the digestion process with trypsin, the uneven distribution of the cells in the scaffold, and the damage of various adverse factors after the cells are implanted in the scaffold, this strategy is often ineffective, and the subsequent applications still face challenges. This article reviews the latest researches of a new strategy-tissue engineering microtissue strategy; discuss several traditional construction methods, structure, and function optimization; and practical application of microtissue. The review aims to provide a reference for future research on tissue engineering microtissue. Impact statement The traditional tissue engineering strategies have several disadvantages, researchers have conducted extensive research on tissue engineering microtissues in recent years, and they make significant progress. Microtissue is a kind of microtissue with three-dimensional structure, its microstructure is similar to that of natural tissue. In addition, microtissue implantation can protect cells from mechanical interference, inflammation, and other adverse factors. Furthermore, it improves the survival rate of cells and the therapeutic effect of tissue-engineered grafts. However, the practical conditions, advantages, and disadvantages of tissue engineering microtissue have not been fully elucidated. The purpose of this review is to discuss the latest research progress of microtissue and provide a reference for future research.


Assuntos
Técnicas de Cultura de Células , Engenharia Tecidual , Diferenciação Celular , Matriz Extracelular , Humanos , Engenharia Tecidual/métodos
14.
Plant Physiol ; 183(4): 1681-1695, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513835

RESUMO

MicroRNA399 (miR399) regulates phosphate homeostasis in plants by down-regulating the expression of PHOSPHATE2 (PHO2, or UBC24 encoding the ubiquitin-conjugating E2 enzyme). We previously identified CsmiR399a.1 in a small RNA sequencing screen of a male-sterile somatic cytoplasmic hybrid (or cybrid) of pummelo (Citrus grandis). Here, we report that miR399 affects reproductive development and male fertility in citrus. Down-regulation of CsmiR399a.1 using a short tandem target mimic (STTM) led to abnormal floral development, inhibition of anther dehiscence, and decreased pollen fertility. When grown in inorganic phosphate (Pi)-sufficient conditions, CsmiR399a.1-STTM plants had lower total phosphorus content in their leaves than the wild type and showed typical symptoms of Pi deficiency. In CsmiR399a.1-STTM plants, the expression of genes involved in starch metabolism and Pi homeostasis was significantly different than in the wild type. Thus, we conclude that miR399-STTM mimicked Pi deficiency, disturbed starch metabolism, and was responsible for pollen grain collapse in the transgenic lines. We identified CsUBC24, a citrus homolog of Arabidopsis (Arabidopsis thaliana) AtUBC24 (PHO2), as a target of CsmiR399a.1 that physically interacts with the floral development regulators SEPALLATA family (CsSEP1.1, CsSEP1.2, and CsSEP3) and the anther dehiscence regulator INDUCER OF CBF EXPRESSION1 (CsICE1). We hypothesize that CsUBC24 downregulates the CsSEPs, which disrupts the floral meristem identity regulatory network and leads to developmental abnormalities in flowers. By interacting with CsICE1, CsUBC24 disturbs stomate function on the anther surface, which inhibits anther dehiscence. These findings indicate that a miR399-based mechanism influences both reproductive development and male fertility in citrus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Citrus/metabolismo , Citrus/fisiologia , Flores/metabolismo , Flores/fisiologia , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citrus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
15.
Phys Chem Chem Phys ; 22(18): 9923-9933, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32309845

RESUMO

In this work, a theoretical method for the prediction of both the relaxation time of quantum tunneling of magnetization (τQTM) and the effective barrier of magnetic reversal (Ueff) is proposed for single-ion magnet (SIM) systems of Kramers type. The reliability of theoretical τQTM is tested within a large series of 18 lanthanide SIMs. Compared to the experimental results, the deviations of theoretical τQTM are within one order of magnitude for 11 tested SIMs and the largest order-of-magnitude deviation is only 1.86. In the aspect of Ueff, for 5 typical high-performance Dy-SIMs of the local coordination mode of a pentagonal bipyramid, the relative deviations of theoretical values lie within the range of 1.4-7.2%. Thus this method possesses good reliability, at least in the aspect of the order of magnitude. Besides an empirical estimate of the local magnetic field experienced by the central ion, for a given SIM, one ab initio calculation, providing accurate g-factors of both ground and excited Kramers doublets (KDs), is the only computational cost. Therefore this method has a high degree of both reliability and efficiency. Based on the temperature dependence of theoretically predicted Ueff and its contributions from various KDs, some mechanistic information on the magnetic relaxation could be given by this method too. Therefore it is reasonable to expect the bright prospect of this method in the aspects of both the interpretation of the existing experimental results and rational design of future high-performance SIMs.

16.
J Hazard Mater ; 384: 121307, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629597

RESUMO

Plasma advanced oxidation process (PAOP) has great ability to break recalcitrant pollutants into small molecular compounds but suffers from poor performance and low energy efficiency for mineralizing dyeing pollutants. Combining advanced oxidation process with biodegradation process is an effective strategy to improve mineralization performance and reduce cost. In this study, a combined process using PAOP as pre-treatment followed by microbial fuel cell (MFC) treatment was investigated to mineralize methylene blue (MB). The PAOP could degrade MB by 97.7%, but only mineralize MB by 23.2% under the discharge power of 35 W for 10 min. Besides, BOD5/COD ratio of MB solution raised from 0.04 to 0.38 while inhibition on E. coli growth decreased from 85.5% to 28.3%. The following MFC process increased MB mineralization percentage to 63.0% with a maximum output power density of 519 mW m-2. The combined process achieved a mineralization energy consumption of 0.143 KWh gTOC-1 which was only 41.8% of that of PAOP. FT-IR, UV-vis and pH variation demonstrated that PAOP could break the aromatic and heterocyclic structures in MB molecule to form organic acids. Possible degradation pathways of MB were accordingly proposed based on LC-MS, GC-MS, and density functional theory calculation.


Assuntos
Fontes de Energia Bioelétrica , Azul de Metileno/metabolismo , Gases em Plasma/química , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Biofilmes , Escherichia coli/efeitos dos fármacos , Azul de Metileno/química , Oxirredução , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
17.
RSC Adv ; 10(17): 9814-9823, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498575

RESUMO

The electroreduction of nitrogen (N2) has gained increasing attention as a promising route to achieve green and sustainable ammonia (NH3) production. However, the construction of an active and durable electrocatalyst for N2 reduction reaction (NRR) remains a significant challenge. Herein, we, for the first time, report that S/N co-doped carbon cloth (CC) with abundant defects can serve as an efficient NRR electrocatalyst at ambient conditions. The S/N co-doped CC was prepared through a novel one-step method by using ammonium persulfate (APS) as the source of nitrogen and sulfur. The catalyst prepared at 800 °C (CC-APS 800) showed abundant defects and heteroatoms as the active and stable electrocatalytic sites for NH3 electrosynthesis. Based on this, a sizeable NH3 yield of 9.87 × 10-10 mol s-1 cm-2 and high faradaic efficiency of 8.11% were obtained in 0.05 M H2SO4 at -0.3 V (vs. reversible hydrogen electrode, RHE), respectively. Furthermore, the electrocatalytic mechanism on CC-APS 800 was elucidated using the electrochemical in situ Fourier transform infrared technique, and follows an associative reaction pathway. Our work would provide a new guideline for designing metal-free self-standing electrocatalysts for the NRR and other applications.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-822683

RESUMO

Objective@#To learn the demand for traditional Chinese medicine(TCM)healthcare services among the elderly people in community based on Andersen's behavioral model. @*Methods@#The people aged 60 years or above in six communities of Changqing Street,Xiacheng District,Hangzhou were recruited. Based on Andersen's behavioral model,a questionnaire was developed to investigate their demand for TCM healthcare services. The logistic regression model was used to analyze the influencing factors for the demand,and the advantage analysis method was used to figure out the importance of the influencing factors.@*Results@#A total of 360 questionnaires were sent out and 352(97.78%)valid questionnaires were recovered. There were 215(61.08%)people with demand for TCM healthcare services,ranking first in TCM health intervention and assessment(68.84%),followed by TCM health consultation and guidance(42.79%). The results of multivariate logistic regression analysis showed that age of 70 years old and over(OR:1.958-2.767,95%CI:1.087-6.493),monthly income of 2 000 yuan and over(OR:2.757-3.409,95%CI:1.356-6.555),modest family relation(OR=0.152,95%CI:0.076-0.306),severity of disability(OR:2.980-4.332,95%CI:1.545-11.906)and severity of depression(OR:3.792-17.347,95%CI:1.972-68.020)were the influencing factors for TCM healthcare services demand of the elderly. Among them,the importance weights of the demand factors(disability and depression),the ability factors(monthly income and family relation)and propensity factors(age)were 47.59%,34.02% and 18.39%,respectively. @*Conclusions @#Factors influencing the demand for TCM healthcare services in the elderly include age,monthly income,family relation,disability and depression,with the last two factors of the most importance.

19.
Crit Rev Biotechnol ; 39(8): 1015-1030, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31496297

RESUMO

Various new energy technologies have been developed to reduce reliance on fossil fuels. The bioelectrochemical system (BES), an integrated microbial-electrochemical energy conversion process, is projected to be a sustainable and environmentally friendly energy technology. However, low power density is still one of the main limiting factors restricting the practical application of BESs. To enhance power output, functional group modification on anode surfaces has been primarily developed to improve the bioelectrochemical performances of BESs in terms of startup, power density, chemical oxygen demand (COD) removal and coulombic efficiency (CE). This modification could change the anode surface characteristics: roughness, hydrophobicity, biocompatibility, chemical bonding and electrochemically active surface area. This will facilitate bacterial adhesion, biofilm formation and extracellular electron transfer (EET). Additionally, some antibacterial functional groups are applied on air cathodes in order to suppress aerobic biofilms and enhance cathodic oxygen reduction reactions (ORRs). Various modification strategies such as: soaking, heat treatment and plasma modification have been reported to introduce functional groups typically as O-, N- and S-containing groups. In this review, the effects of anode functional groups on electroactive bacteria through the whole biofilm formation process are summarized. In addition, the application of those modification technologies to improve bioelectricity generation, resource recovery, bioelectrochemical analysis and the production of value-added chemicals and biofuels is also discussed. Accordingly, this review aims to help scientists select the most appropriate functional groups and up-to-date methods to improve biofilm formation.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Biofilmes , Bactérias/classificação , Aderência Bacteriana , Fontes de Energia Bioelétrica/economia , Eletrodos , Transporte de Elétrons , Propriedades de Superfície , Molhabilidade
20.
ACS Appl Mater Interfaces ; 11(35): 32038-32045, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403274

RESUMO

Solar vapor generation holds great potential for seawater desalination and wastewater treatment. Although various efficient solar absorbers have been developed to enhance the performance of solar vapor generators in recent years, their efficiency is still limited by unnecessary heat loss. In this article, a novel 3D hierarchical solar vapor generator (3DHG) was constructed with hydrophilic carbon felt. Different from interfacial solar vapor generators reported before, the porous and hydrophilic channels of 3DHG were exposed to the air directly, which probably resulted in a lower saturated vapor pressure of 3DHG. Therefore, this structure was beneficial for vapor escaping and led to lower average temperature of 3DHG than that of the surroundings at the same time owing to negligible convection loss and radiation loss of 3DHG. The highest evaporation rate (ER) of 1.56 kg m-2 h-1 and efficiency of 98.1% were obtained under 1 sun. In addition, 3DHG was also used for industry dyeing wastewater treatment and exhibited a minimum ER of 1.45 kg m-2 h-1 even after 7 days. This study presents a novel approach not only to design a solar vapor generator with high efficiency but also widens its potential application in seawater desalination and practical wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...